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ABSTRACT 
 
Robust, timely, and remote detection of mines and minefields is central to both tactical and humanitarian 
demining efforts, yet remains elusive for single-sensor systems.  Here we present an approach to jointly 
exploit multisensor data for detection of mines from remotely sensed imagery.  LWIR, MWIR, laser, 
multispectral, and radar sensor have been applied individually to the mine detection and each has shown 
promise for supporting automated detection.  However, none of these sources individually provides a full 
solution for automated mine detection under all expected mine, background and environmental conditions.  
Under support from Night Vision and Electronic Sensors Directorate (NVESD) we have developed an 
approach that, through joint exploitation of multiple sensors, improves detection performance over that 
achieved from a single sensor.  In this paper we describe the joint exploitation method, which is based on 
fundamental detection theoretic principles, demonstrate the strength of the approach on imagery from 
minefields, and discuss extensions of the method to additional sensing modalities.  The approach uses pre-
threshold anomaly detector outputs to formulate accurate models for marginal and joint statistics across 
multiple detection or sensor features.   This joint decision space is modeled and decision boundaries are 
computed from measured statistics.  Since the approach adapts the decision criteria based on the measured 
statistics and no prior target training information is used, it provides a robust multi-algorithm or 
multisensor detection statistic.  Results from the joint exploitation processing using two different imaging 
sensors over surface mines acquired by NVESD will be presented to illustrate the process.  The potential of 
the approach to incorporate additional sensor sources, such as radar, multispectral and hyperspectral 
imagery is also illustrated. 
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1. INTRODUCTION 
 
Robust detection of mines and minefields over wide areas presents a significant challenge to both 
humanitarian and tactical demining efforts.  Ground-based methods are effective, but are limited in terms of 
search rate and coverage area, leading to the need for airborne systems for wide-area mine detection.   The 
objective of this effort was to establish a proof-of-concept for improved minefield detection through the 
joint exploitation of multiple sensors from airborne platforms.  In this paper we establish the foundation for 
improving minefield detection performance through development of effective multi-sensor processing 
methods for detecting surface minefields from airborne sensors.  This effort concentrates on the use of 
existing sensor data acquired by Night Vision Electronics and Sensors Directorate (NVESD) using mid-
wave infrared (MWIR) and laser-illuminated imagery in the near infrared.  Space Computer Corporation 
has developed methods for joint algorithm exploitation (JALEX)  [Stein, et al. 2001], and adapted these for 
use in joint multisensor exploitaiton (JMEX).  These approaches are based on the notion of fusion of 
multiple detector outputs to improve target sensitivity, while reducing false alarm rates over individual 
detection algorithms or sensing modalities.  The method is based on sound detection theory principles as an 
alternative to ad hoc methods, such as simple Boolean logic.  The approach uses pre-threshold detector 
outputs to formulate accurate models for marginal and joint statistics across multiple detection or sensor 
features.   This joint decision space is modeled and decision boundaries are computed to provide a robust 
multi-algorithm or multisensor detection statistic.  In this paper we describe application registration 
processing and the joint exploitation methodology for fusion of minefield discriminants from multiple 
sensor observables.   The application of JMEX processing to multisensor airborne measurements over 



 

 

minefields results in significant detection performance improvements over individual sensor processing 
results. 
 
 

2. JOINT MULTISENSOR EXPLOITATION OVERVIEW 
 
The quest for systematic performance enhancement from application of multiple sensors or algorithms to 
detection of minefields targets has led to the recent development of joint exploitation processing.  The 
JMEX approach is a systematic methodology for fusing registered multiple detector outputs.  The goal of 
this approach is to adaptively combine multiple detector outputs such that performance is improved (or at a 
minimum, retained) over the best single sensor performance.  This methodology is based on development 
of a fully adaptive decision criterion from the joint distribution formed by the multiple detector outputs.  
Ideally we would like to define an optimal decision contour to segregate target from clutter in the joint 
decision space as illustrated in figure 1.  The JMEX approach seeks to approximate an optimal decision 
boundary through a process that includes modeling of the marginal probability distributions of each sensor 
detection feature, standardizing these marginals and accounting for the correlation between them.  
Evaluation of the joint distribution for each sample results in a scalar fusion decision statistic such that is 
thresholded for detection purposes.  Each threshold corresponds to a decision contour in the joint detection 
feature space from multiple sensor detectors.   
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Figure 1.  Conceptual illustration of joint fusion of detection features from two sensors.   
 
The general framework for joint multisensor processing is illustrated in figure 2.  This paper focuses on the 
use of multi-band MWIR and Laser-illuminated near-IR sensor data with SCC’s registration and joint 
multiband, multisensor exploitation framework.  This general fusion framework is flexible and can be 
expanded to accommodate other maturing sensor technologies for mine detection including scanned lasers, 
pulse compression lasers (LADARs), imaging radars and hyperspectral sensors operating in the reflective 
EO and thermal bands. The input data consists of multispectral MWIR and Laser-illuminated imagery, with 
potential future extensions to broadband and multi-band LWIR and Hyperspectral Imagery (HSI) data.  The 
framework includes the capability for cross-sensor registration, detection feature generation (based on 
anomaly detection), joint processing, and post detection spatial/spectral analysis.  For general mine 
detection application the detection features are based on anomaly detection filtering, since signatures for 
mines may vary widely and are not typically known a priori. 
 
Our approach combines geolocation based registration with scene-based refinement to generate multisensor 
imagery that can be jointly exploited.  Since registration accuracy from multiple sensors cannot be 
accomplished in general at the subpixel level, JMEX processing approach accommodates joint exploitation 
at the object level, based on detection features derived from each source.  Detection features are computed 
from application of mature anomaly detection algorithms.  The derived detection features are combined 



 

 

optionally using our JALEX approach, which is described in detail later, and then fed into the JMEX 
processing to fuse features derived from multiple imaging sensors. 
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Figure 2.  Joint Multisensor Exploitation Processing Framework.   

 
The method is based on a fully adaptive decision criterion derived from the joint distribution formed by the 
multiple detector outputs.  The JMEX approach seeks to approximate an optimal decision boundary 
through a process that includes modeling of the marginal probability distributions of each sensor detection 
feature, standardizing these marginals and accounting for the correlation between them.  Evaluation of the 
joint distribution for each sample results in a scalar fusion decision statistic such that is thresholded for 
detection purposes.  The result from JMEX processing is a detection statistic plane upon which we apply 
spatial clustering with optional spatial filtering and cluster size and shape constraints to produce individual 
detected object locations.  
 
 

3. REGISTRATION and DATA PREPARATION 
 
Two primary sensor data sources were made available by NVESD for this effort: 1) a mid-wave infrared 
(MWIR) and 2) a laser-illuminated near-infrared imager.  The multisensor data set includes imagery from 
minefields in short grass, tall grass and primarily bare soil with sparse vegetation from a single-band 
MWIR imager and a laser-illuminated two-polarization imager operating at 808 nm.  The sensors were 
deployed as part of the Lightweight Airborne Multispectral Minefield Detection (LAMD) program at 
NVESD.  The laser system is an SMD BT-25 low-light Breadboard Laser camera that uses high-throughput 
dual polarizing beam splitters to provide P and S channel separation.  The MWIR camera is an Amber 
Radiance 1 system with multiple filters to provide different band selections.  The multisensor data set was 
used to refine georegistration and image-based registration techniques and for evaluation of our multisensor 
exploitation processing techniques.  
 

Multi-Frame/Multi-Sensor Registration 
 
The multisensor data set described above was used to perform cross-sensor registration, as well as to 
address the issue of sensor self-registration from frame-to-frame.  These data, along with corner point 
geoposition information, were used to produce georegistered image mosaics suitable for multisensor 
exploitation.  There were several key issues that we resolved in generating these results.  First, the imagery 



 

 

(particularly laser camera) appeared to contain a significant amount of residual non-uniformity.  We 
minimized this artifact by applying a scene-based gain correction to the data.  This scene-based information 
was carefully derived to avoid the effect of a few dominant scatterer in the imagery (such as fiducial 
panels). Second, there were residual frame-to-frame geopositions or jitter errors that had to be resolved to 
register subsequent overlapping frames.  These errors were small in absolute terms (e.g. 5-15 cm) but 
resulted in significant degradation of imagery when multiple frame data were averaged to produce the 
georeferenced image product.  Finally, residual-scaling factors from the “jitter”-corrected imagery had to 
be resolved between the sensors.  This scaling was observed to be < 2%, and is not apparent in viewing the 
individual frame data, but becomes apparent when a large number 50-60 frames are projected onto a geo-
referenced grid.   These were resolved by estimating this minor scaling difference from the imagery.  
 
  

Residual Displacement Correction of Georeferenced Imagery  
 
Initial attempts to produce a mosaicked set of imagery from the series of partially overlapping 
georeferenced image frames resulted in apparent blurring.  This blurring was due to small geo-positioning 
errors and/or jitter in the range of a few pixels (5-15 cm).   The source of the error may either be due to 
location accuracy of GPS and point information or imprecision in camera models used to derive image 
corner point geolocation information.  This small error source is particularly apparent when forming a 
mosaic from multiple overlapping frames of image data.  The left side of figures 3 shows the result from 
averaging a number (typically 2-5 for this data set) of overlapping frames for both the MWIR imager.  
These images over panels in the scene illustrate that there is a small, but significant offset between geo-
registered image frames once they are projected into geolocation-based coordinates.  The result of this is a 
blurring of the imagery and in the case of the panels, ghosting of localized objects.  This residual error 
varies within the data set but typically ranges from 0 to 15cm.   
 
To correct this residual frame-to-frame misregistration we incorporated local-area-based estimation of 
frame-to-frame displacement (“jitter-correction”) for overlapping regions of adjacent frames.  These 
estimates were used to define a relative offset for each frame of data and resulted in a more precisely 
registered image product.  The right sides of Figures 3 illustrates the resulting improved composite 
georeferenced imagery.  The processing described above was used to generate sets of geo-referenced, 
registered image mosaics that are suitable for cross-sensor analysis and processing.  The resulting sensor-
to-sensor registration is sufficient for object-level multisensor analysis and processing as we initially 
proposed.  Examples from both laser-illuminated and MWIR imagery are shown in Figure 4. In both cases 
we show the georeferenced image mosaic on the left, with detail highlights of a selected region on the 
middle and right of each figure.   
 

Original multi-frame
composite detail

Composite detail after frame-to-
frame displacement correction

 
Figure 3.  Multiframe composite MWIR image detail without (left) and with (right) frame-to-frame jitter-
correction.  Note the significant improvement in image clarity on both the panel and natural background 
within this scene.  Frame-to-frame displacement correction is incorporated into our multisensor geo-
referenced imagery processing. 
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Figure 4.  a) Georeferenced display of Laser-illuminated (co-polarized) imagery.  This includes the residual 
non-uniformity and displacement (jitter) correction, is well as dynamic multi-frame averaging to produce 
this georeferenced image mosaic.  b)  Georeferenced display of MWIR imagery.  This includes the residual 
non-uniformity and displacement (“jitter”) correction, as well as dynamic multi-frame averaging to produce 
this georeferenced image product. 
 



 

 

4. DETECTION FEATURE GENERATION 
 
The registration processing described above was used to generate 3-band image cubes containing the two 
laser bands and the single MWIR band to examine efficacy of joint exploitation of multisensor processing.  
Figure 5 shows the three bands of the georegistered imagery from a section run over tall grass used in our 
analysis.  We reduced the sampling of both sensors to facilitate data handling and further processing on 
these data.  Because of the residual registration error between sensors, processing of the multisensor 
imagery at the pixel level is not feasible.  Therefore we applied the capability in our JMEX approach to 
associate objects from individual detection feature planes based on relative positions.  This simple 
association approach relaxes the need for precision location, but still requires that objects be within a 
reasonable distance from each other to ensure adequate multisensor detection performance. 
 
To generate individual sensor detection features we applied a local Reed Xiaoli (R-X) anomaly detector 
implementation [Reed and Yu, 1990; Haskett and Rupp, 2002].  We adjusted the algorithm to optimize 
performance over each of the scenes processed.  Although we attempted other anomaly detector 
approaches, found that the local R-X algorithm consistently worked well over the imagery analyzed and 
was selected to be the initial detection feature used for joint processing.  Since the clutter in the scenes used 
was relatively benign, we did not observe any advantage in the segmentation that spectral clustering or 
linear mixture-based algorithms.  We believe that more severe clutter environments may require the use of 
these other approaches for detection feature extraction and the framework we are employing here will 
accommodate this.  The R-X algorithm was applied to the two-band laser imagery independent of the 
MWIR image.  Figure 5 shows a section of the MWIR imagery with the raw R-X filter output.  The 
corresponding result from the Laser-based R-X filtering is shown in figure 6.  
 
We applied spatial cluster and size filtering to the raw R-X output to produce object detections in both of 
the R-X image data sets.  The spatial clustering and size filtering provides a mechanism to reduce false 
alarms through the use of both size and shape factors.  The resulting detected objects are illustrated in 
figure 7 for the sections of imagery shown previously.  Note that the locations of false alarms and missed 
detections tend to complement one another in these results.  Our JMEX process, described below, is 
designed to take advantage of this observation. 
 

 
Figure 5.  Section of MWIR imagery (left) and R-X filter output (right).  Red boxes indicate mine 
locations.  
 
 
 



 

 

 
Figure 6.  Section of cross-polarized laser-illuminated imagery (left) and R-X filter output (right). Red 
boxes indicate mine locations.  
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Figure 7.  Clustered results from R-X applied to a) MWIR imagery and b) Laser imagery, along with target 
locations in red and blue boxes.  Note that the locations of the false alarms and missed detection are 
different than for the same section of results from the Laser imagery.  For illustration the threshold was set 
at Pd ~ 0.85 over a large segment of this data file containing approximately 20 mine targets. 
 

5. JOINT MULTISENSOR EXPLOITATION PROCESSING 
 
Joint Multisensor Exploitation is an adaptation our Joint Algorithm Exploitation (JALEX) approach and is 
a systematic methodology for fusing registered multiple detector outputs.  The method is based on 
development of a fully adaptive decision criterion from the joint distribution formed by the multiple 
detector outputs.  The JMEX approach seeks to approximate an optimal decision boundary through a 
process that includes modeling of the marginal probability distributions of each sensor detection feature, 



 

 

standardizing these marginals and accounting for the correlation between them.  Evaluation of the joint 
distribution for each sample results in a scalar fusion decision statistic such that is thresholded for detection 
purposes.  
 
 

5.1 Tail Distribution Modeling and Standardization 
 
The first step in the joint detection feature fusion approach includes modeling the distributions of each 
detection feature independently (i.e. the marginals of their joint distribution).  This is essential for 
developing joint fusion decision criteria because of the large variability in output distributions from 
detectors applied to different types of data. Although the detection features previously have many 
similarities the output distributions may be quite different.   The detection feature plane from each sensor is 
modeled using Gamma mixture distributions to enable standardization of these distributions to a standard 
distribution, such as exponential or Gaussian as described below. 
 
Quadratic detector distributions may be modeled through the use of Gamma mixture densities based on 
empirical and theoretical justification [Stein, et al, 2001].  The Gamma mixture model has the following 
form, 
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where wm; m=1,…,M are the mixture weights.  The central Gamma probability density function (PDF) with 
shape parameter r and scale parameter a is given by, 
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We used a non-linear least-squares fit to the logarithm of the sample tail probability to estimate the 
parameters of the Gamma mixture to fit each of the marginals.  In the figure below we show the result from 
fitting Gamma mixture models to both the Laser-based and MWIR-based individual detector outputs.  In 
both cases the Gamma mixtures provide and excellent fit to the marginal distributions.   
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Figure 8.  Three-component Gamma Mixture model fit to output detector from MWIR imagery (left) and 
from Laser-illuminated imagery (right). 
 
 
The Gamma mixture model fit was then used to standardize each marginal distribution to an exponential.  
The resulting standardization from fitting detection features from two sensors is shown in figure 9.  Note 
that the vastly different distributions shown previously have been effectively standardized to the 
exponential distribution, which is ideally a straight line in the figure.  
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Figure 19. Exponential-standardized tail distributions for the multisensor detection.  Ideal exponential 
would be a straight line on this figure.  The model fits approximate exponential for five orders of 

magnitude indicating a good fit between the model and data. 
 

5.2 Construction of Joint Distribution and Decision Statistics 
 
To implement joint fusion of detectors from two different sensors (or algorithms) we build a likelihood 
ratio test based on assumed distributions under the clutter-only (H0) and target (H1) hypotheses.  Ideally the 
distributions are both known and the optimal detector is given by the following 
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where x is the observation vector containing multiple detector output; fj are the distributions and θj are the 
observations, under hypothesis j; and γ is a threshold.  In our case we do not use any prior target 
information, which is or equivalent to assuming that the target is uniformly distributed in the detection 
feature space.  However we may construct an estimate for the joint clutter distribution (H0 case) from the 
sample data and the marginal distributions described in the previous section.  Our joint decision rule then 
becomes a threshold test on the log-likelihood of the data under the joint clutter distribution f0 :  

 ( ) ( )0logx f xλ = −     (18) 

This is equivalent to defining a constant-likelihood contour on the clutter distribution in the joint detection 
feature space.  Therefore the construction of a joint distribution is critical in performing the fusion of the 
multiple sensor outputs.  We have two methods for constructing the joint distribution.  These are called the 
“pullback” and “standardized” variants.   In the pullback approach the joint density is defined for normal-
distributed standardized variables, then “pulled back” to the original feature space of the detector outputs 
for setting the decision boundary.  In the standardized variant the joint density is defined in a transformed 
feature space of exponential variables, by fitting a multivariate Gamma distribution. 
 
Here we illustrate the concept by application of the standardized variant, using exponential distributions.  
The construction of the joint distribution is performed in standardized feature space, where the individual 
detector outputs have been modeled as described in the previous section and standardized to an exponential 
distribution.  The association of samples from one sensor to another may be performed on a pixel level.  
However, since our expected accuracy of registration between the sensors is greater than a pixel we must 



 

 

be careful in our association of detector outputs.  In this case we associate the largest response within a 
local window for each of the detectors.  This allows for residual misregistration between the sensors.  This 
also allows the individual sensors to respond to different parts of the same object, while still having the 
detector outputs associated at the object level.  The joint distribution is then constructed from the object-
level association of the standardized distributions. 
 
The joint distribution is fit with joint Gamma model and this model is fit to the data by estimating the 
parameters of the marginal Gamma distributions (shape and scale) and the correlation coefficients using 
least-squares methods.  The joint detection statistic is then computed as described above. Figure 10 
illustrates the standardized histogram density for the associated samples from the two sensors and model fit 
(right) for MWIR- and Laser-based detection features.   Evaluation of the joint distribution for each sample 
results in a scalar fusion decision statistic such that is thresholded for detection purposes.  Each threshold 
corresponds to a decision contour in the joint detection feature space shown in figure 10 (right).   
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Figure 10.  Standardized histogram density (left) and standardized joint density model estimate (right), 
based on the standardized empirical distributions from MWIR- and Laser-based standardized feature space. 
 
 

6. PERFORMANCE RESULTS 
 
The JMEX process, based on local R-X detection features was applied to two different image pairs and 
scored for detection performance.  The scene labeled T281 includes two mine types deployed in tall grass.  
The T3146 imagery includes two principal mine types deployed on primarily bare soil, with sparse 
vegetation.  Target masks were based on NVESD-provided ground truth text files.  We also identified 
obvious panels in the scenes and ignored responses from these areas in the scoring process.  The resulting 
relative ROC performance metrics for the T281 and T3146 scenes are shown in Figures 11 and 12 below. 
 
In the T281 scene, the better-performing individual sensor was the MWIR camera, whereas in the bare soil 
case it was the Laser system.  In either case, the JMEX processing was as good as the better sensor and in 
some portions of the ROC curve outperformed detection by either sensor individually by a significant 
margin.  Note that because of the relatively small region care must be taken in extrapolating these 
performances in general.  However, these results indicate that JMEX processing of object-level registered 
MWIR and Laser-illuminated imagery shows promise in improving overall mine detection performance on 
surface mines. 
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Figure 11.  Relative ROC performance for the segment of T281 containing all mine targets for individual 
sensor and JMEX processing.  In this example JMEX provided a significant improvement over the better 
individual sensor (MWIR ).  
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Figure 12.  Relative ROC performance for the segment of T3146 containing all mine targets for individual 
sensor and JMEX processing.  In this example JMEX provided a significant improvement over the better 
individual sensor (Laser).  
 
 



 

 

7. SUMMARY 
 

In this paper we presented an approach for robust detection of surface mines from multisensor data.  The 
approach is based on joint exploitation of multiple anomaly detection filters and requires neither prior 
knowledge of target signature nor any training on mine data.  The approach was been demonstrated to 
provide significant detection performance improvement over single sensor airborne mine detection. 
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